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1 Introduction

From the dispersion of frequencies (ω(~k)) it is possible to calculate the phase velocity, group velocity,
sound speed, specific heat etc. At lectures we calculated simple monatomic and diatomic lattice with
help of forces. Because this method “allows” mistakes concerning “signs”, I prefer using energies
which have quadratic forms and signs don’t matter anymore. One way is calculating forces from the
potential

~F = −~∇V, (1)

where V is the potential, ~F is the force in the second Newton’s law

~F = m~̈r, (2)

where m is the mass of the particle, ~̈r is the acceleration. Another way is using Euler-Lagrange
equations which represent the “craft” for solving many different physical problems.

In this seminar I am going to represent “handy tool” called Euler-Lagrange equations concerning lat-
tice vibrations when having different lattices, when having basis and when having different potentials
in 1D and 2D.

2 Euler-Lagrange Equation

For system of n particles deriving Euler-Lagrange equations starts from second Newton’s law

~Fi = mi~̈r, (3)

where i = 1 : n. For all particles equation 3 can be rewritten into matrix form
m1~̈r1

m2~̈r2
...

mn~̈rn

 =


~F1

~F2
...
~Fn

 (4)

which we multiply with transponed vector of 
∂~r1

∂qk
∂~r2

∂qk
...

∂~rn

∂qk

 , (5)

where qk are parameters on which system depends. What we get is

m1~̈r1
∂~r1

∂qk

+ m1~̈r2
∂~r2

∂qk

+ . . . + mn~̈rn
∂~rn

∂qk

= ~F1
∂~r1

∂qk

+ ~F2
∂~r2

∂qk

+ . . . + ~Fn
∂~rn

∂qk

, (6)

where

~ri = ~ri(q1, q2, . . . , qN , t). (7)

From expression 7 we can write
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~̇ri =
n∑

j=1

∂~ri

∂qj

q̇j +
∂~ri

∂t
, (8)

from which we can write the derivative with respect to q̇l

∂~̇ri

∂q̇l

=
∂~ri

∂ql

. (9)

With expression 9 we can write the left side of equation 6

mi~̈ri
∂~ri

∂qk

= mi~̈ri
∂~̇ri

∂q̇k

=

=
d

dt
(mi~̇ri

∂~̇ri

∂q̇k

)−mi~̇ri
d

dt

∂~̇ri

∂q̇k

=

=
d

dt
(
1

2
mi

∂~̇r
2

i

∂q̇k

)−mi~̇ri
d

dt

∂~ri

∂qk

=

=
d

dt

∂

∂q̇k

(
1

2
mi~̇r

2

i )−mi~̇ri
∂~̇ri

∂qk

=

=
d

dt

∂

∂q̇k

(
1

2
mi~̇r

2

i )−
∂

qk

(
1

2
mi~̇r

2

i ), (10)

where we have taken into account that yy′ = 1
2
(y2)′ and ∂x2

∂t
= 2x∂x

∂t
. If we say that kinetic energy is

T =
∑

i

1

2
mi~̇r

2

i , (11)

equation 10 can be rewritten into

d

dt

∂T

∂q̇k

− ∂T

qk

. (12)

Right side of equation 6 can be with help of equation 1 written into

∑
i

~Fi
∂~ri

∂qk

= −
∑

i

∂V

∂~ri

∂~ri

∂qk

= −∂V

∂qk

= −∂V

∂qk

+
d

dt

∂V

∂q̇k

, (13)

where the last term, which equals 0, was added because of the symmetry with equation 12. We define
Lagrangian1

L = T − V. (14)

With equations 6, 12, 13 and 14 we can write Euler-Lagrange equations

d

dt

∂L

∂q̇k

− ∂L

∂qk

= 0. (15)

1Hamiltonian function equals H = T + V .
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3 Euler-Lagrange Equation in Matrix Form

When system is oscillating around equilibrium P0, we can write for the system

P = P0 + P ′ = P (q0
1 + η1, . . . , q

0
N + ηN), (16)

where ηi are small. Lagrangian can be written with matrices

L =
1

2
η̇kTklη̇

l − 1

2
ηkVklη

l, (17)

where

η =


η1
...

ηN

 , (18)

T =


T11 . . . T1N
...

...
TN1 . . . TNN

 , (19)

where Tki = Tik, T=TTransponed,

V =


V11 . . . V1N
...

...
VN1 . . . VNN

 , (20)

where Vki = Vik, V=VTransponed. Euler-Lagrange equation

d

dt

∂L

∂η̇i

− ∂L

∂ηi

= 0 (21)

with equation 17 yields

Tilη̈
l + η̈kTki + Vilη

l + ηkVki = 0. (22)

There is no drawback for changing k to l in equation 22

Tilη̈
l + η̈lTli + Vilη

l + ηlVli = 0. (23)

Using Tki = Tik and Vki = Vik equation 23 turns to

Tilη̈
l + η̈lTil + Vilη

l + ηlVil = 0. (24)

When dealing with components of matrices and vectors, we can easily change the position of ηl and
Vil or Til . The equation 24 changes

Tilη̈
l + Vilη

l = 0. (25)

Last equation can be rewritten into matrices and vector form

Tη̈ + Vη = 0. (26)

Ansatz for solving equation 26 is



4 VIBRATION OF THE CRYSTAL LATTICE 6

η = ~Eeiωt, (27)

which gives

(−ω2T + V) ~E = 0. (28)

Equation 28 has nontrivial solution only when

det(−ω2T + V) = 0. (29)

4 Vibration of the Crystal Lattice

Vibrations of the crystal lattice or so called phonons are usually calculated only concerning first
neighbour interaction.

Figure 1: 1D monatomic lattice with N ions with mass m, string/potential coefficient K, displacement
un.

From Figure 1 position of ions can be written as

xn(t) = an + un(t). (30)

Potential, when taking into account only nearest neighbour interactions, is

U =
∑
n

V (xn+1(t)− xn(t)) =

∼ NV (a) +
1

1!

∑
n

(un+1(t)− un(t))
dV

dx
|x=a +

1

2!

∑
n

(un+1(t)− un(t))2d2V

dx2
|x=a + . . . =

= NV (a) +
1

2

∑
n

(un+1(t)− un(t))2d2V

dx2
|x=a + . . . , (31)

where we have expressed the sum in Taylor series and have taken into account that dV
dx
|x=a = 0,

because we are dealing with small oscillations i.e. we are always near equilibrium. Comparing
equation 31 with potential energy of strings (U = 1

2
Ku2) we get can write the string/potential

coefficient as

K =
d2V

dx2
|x=a. (32)

Kinetic energy is as usual

T =
1

2

∑
n

mu̇2
n. (33)
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Lagrangian is then

L = T − U =
1

2

∑
n

(mu̇2
n −K(un+1 − un)2). (34)

In equation 36 we dropped out term NV (a) because it is a constant and drops out when solving
Euler-Lagrange equations

d

dt

∂L

∂u̇n

− ∂L

∂un

= 0

mün + K(2un − un+1 − un−1) = 0. (35)

At lectures we already solved this equation with ansatz un = u0e
i(ωt−kna) and we got for frequency

dispersion

ω = 2

√
K

m
| sin ka

2
|. (36)

4.1 1D Monatomic “Lattice” with Three Atoms

Lets say that we have 3 ions2. This is the simplest example for using expressions from Chapter 3.

Figure 2: 1D monatomic “lattice” with 3 ions with mass m, string/potential coefficient K, displace-
ment u1,2,3.

Lagrangian in case of Figure 2 equals

L =
1

2
m(u̇2

1 + u̇2
2 + u̇2

3)−
1

2
K((u2 − u1)

2 + (u3 − u2)
2) =

1

2
η̇kTklη̇

l − 1

2
ηkVklη

l, (37)

where

η =

 u1

u2

u3

 , (38)

T = m

 1 0 0
0 1 0
0 0 1

 , (39)

V =
1

2
K(u2

1 + 2u2
2 + u2

3 − 2u1u2 − 2u2u3), (40)

V = K

 1 −1 0
−1 2 −1
0 −1 1

 . (41)

2Solutions of vibrations of 1D monatomic “lattice” with three atoms are eigenvectors of motion of 3-atomic molecule.
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Using equation 28 we get  1− ω2m
K

−1 0

−1 2− ω2m
K

−1

0 −1 1− ω2m
K

 ~E = 0. (42)

Nontrivial solution we get from calculating the determinant of matrix in expression 42 which equals
0. We get 3 different values for frequency dispersions

ω1 = 0, (43)

ω2 =

√
K

m
, (44)

ω3 =

√
3
K

m
, (45)

with corresponding eigenvectors

~E1 =

 1
1
1

 , (46)

~E2 =

 1
0
−1

 , (47)

~E3 =

 −1
2
−1

 . (48)

4.2 1D Monatomic Lattice and Lennard-Jones Potential

Lets have N ions as in Figure 1 which feel Lennard-Jones potential and interaction between closest
neigbours. Lennard-Jones potential (falls with distance x) yields

V = V0((
a

x
)2 − 2(

a

x
)6)). (49)

String coefficient is calculated using equation 32

K = 72
V0

a2
. (50)

Lagrangian is then

L = T − U =
∑
n

(
1

2
mu̇2

n − 36
V0

a2
(un+1 − un)2). (51)

Inserting expression 51 into

d

dt

∂L

∂u̇n

− ∂L

∂un

= 0, (52)

we get
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Mün + 72
V0

a2
(2un − un+1 − un−1) = 0, (53)

which can be solved using ansatz un = u0e
i(ωt−kxn)

ω = 2

√
72V0

a2
sin

ka

2
. (54)

If we would have to take into account also second closest neighbours interaction, we would have to
add extra term in potential energy

U =
1

2

∑
n

(un+1 − un)2d2V

dx2
|x=a +

1

2

∑
n

(un+2 − un)2d2V

dx2
|x=2a. (55)

4.3 1D Diatomic Lattice

At lectures we already solved example of vibration of lattice with two different atoms (see Figure 3)

Figure 3: 1D diatomic lattice with N ions with mass m, and N ions with mass M, string/potential
coefficient K, displacement un, vn.

Once again we can write Lagrangian

L =
1

2

∑
n

(mv̇2
n + Mu̇2

n)− 1

2
K

∑
n

((vn − un)2 + (un+1 − vn)2). (56)

In this case we have two parameters i.e. un and vn i.e. two Euler-Lagrange equations

d

dt

∂L

∂u̇n

− ∂L

∂un

= 0, (57)

d

dt

∂L

∂v̇n

− ∂L

∂vn

= 0 (58)

(59)

from which we get

Mün = −K(2un − vn − vn−1), (60)

mv̈n = −K(2vn − un − un+1). (61)

(62)

Using two ansatzes (un = u0e
i(ωt−kna) and vn = v0e

i(ωt−kna)) in equations 61 and 62 we get two
independent equations from which we get two solutions (acoustic and optical branch)

ω2
1,2 = K(

1

m
+

1

M
)±

√
K2(

1

m
+

1

M
)2 − 4K2

mM
sin2 ka

2
. (63)
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4.4 1D Monatomic Lattice With Two Different String Constants

Instead of having two different atoms in the lattice, we can have two different strings between ions
(see Figure 4).

Figure 4: 1D monatomic lattice with 2N ions with mass m, N string coefficients K, N string coefficients
G, displacement un, vn.

Lagrangian for the case of two different strings yields

L =
1

2
m

∑
n

(u̇2
n + v̇2

n)− 1

2

∑
n

(K(un+1 − vn)2 + G(vn − un)2). (64)

With Euler-Lagrange equations 58 and 59 we get

mün − ((K −G)un −Kvn−1 −Gvn) = 0, (65)

mv̈n − ((K + G)vn −Kun+1 −Gun) = 0. (66)

(67)

Using ansatzes un = u0e
i(ωt−kna) and vn = v0e

i(ωt−kna) the frequency dispersion yields

ω2
1,2 =

K + G

m
± 1

m

√
K2 + G2 + 2KG cos ka. (68)

4.5 2D Square Monatomic Lattice with Vibrations Perpendicular to the
Lattice

Simplest example of monatomic 2D lattice is square lattice (see Figure 5).
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Figure 5: 2D monatomic lattice with N2 ions with mass m, string coefficients K, displacement zn

perpendicular to the lattice plane.

From Figure 5 we can write

b =
√

d2 + ∆z2 = d

√
1 + (

∆z

d
)2 ∼ d +

1

2

∆z2

d
+ . . . , (69)

where d = l + ∆l, ∆z << d, so we could introduce Taylor series into equation 69. Lagrangian for
square lattice can be written as

L =
1

2

∑
i,j

mż2
i,j −

1

2

∑
i,j

K(b− l)2 =

=
1

2

∑
i,j

mż2
i,j −

1

2

∑
i,j

K((d− l) +
1

2

∆z2

d
)2 ∼

∼ 1

2

∑
i,j

mż2
i,j −

1

2

∑
i,j

Keff∆z2. (70)

(71)

From Euler-Lagrange equations

d

dt

∂L

∂żi,j

− ∂L

∂zi,j

= 0 (72)

we get

mz̈i,j = Keff (zi+1,j + zi−1,j + zi,j+1 + zi,j−1 − 4zi,j). (73)

Using ansatz zi,j = u0e
i(ωt−~k·~r) we calculated the frequency dispersion

ω =

√
Keff

m

√
sin2

kxd

2
+ sin2

kyd

2
. (74)

5 Conclusion

We have shown that solving problems of vibration in crystal lattices is a completely routine work
when using Euler-Lagrange equations.


