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1 Introduction

In nature exist several phenomena with amazing structures. For example in nonliving nature is
known snowflake growth, mineral deposition, lightning paths etc. and in living nature corals, lichen,
trees etc. These structures are fractal-like.

Figure 1: Snowflakes occur in vast multitude
forms and have 6 similar branches [1].

Figure 2: Lightning path is fractal-like [2].

Figure 3: Fractal sea life in colours [3]. Figure 4: Lichen grows like fractals [4]. The
cleaner the air, the bigger ratio between surface
and perimeter.

Figure 5: Tree. Fractal roots and crown [5]. Figure 6: Leaf’s venation is fractal-like.
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Figure 7: Romanesco broccoli has more frac-
tional structure than other vegetables [6].

Figure 8: Norwegian fjords made by glaciers ac-
tivity [7].

Snowflakes grow from the particles from the environment. Model for formation of fractals grown from
particles from environment was introduced in 1981 by T. A. Witten and L. M. Sander. It is called
Diffusion Limited Aggregation (DLA) (see chapter 2). Many different compounds were synthesised
in laboratories with DLA, there are also several programs for simulating the growth.

1.1 Diffusion

Diffusion is a random motion in fluid systems as well in solid phases.

Figure 9: Brownian motion. Red dot moves
randomly up and down. It’s motion on y-axis
is ploted with respect to time [1].

Figure 10: Diffusion of (a) one type of particles
and (b) two types of particles in the solution [8].

However, particles can walk far relative from the starting point. The driving force for spreading
process is completely statistical.

Diffusion is the macroscopic result of random thermal motion on a microscopic scale. If the distribu-
tion of all types of particles in the solution are not uniform, there will be a net flux even though the
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motion of each individual molecule is completely random. The flux is proportional to the gradient
in concentration (molar or molecular).

~j = −D~∇n, (1)

where D is diffusion constant and n concentration. It is also known

~∇ ·~j = −∂n
∂t

+ q, (2)

where q stands for sources. From equations 1 and 2 and with consideration that D is constant it is
possible to write diffusion equation

∂n

∂t
= D∇2n− q. (3)

1.2 Aggregation

If particles have the possibility to attract each other and stick together, they form aggregates. The
forces between the particles may be weak or strong. For particles which carry electrical charge the
forces are strong. Aggregates represent a preferred state compared to spread particles that can stick
together. Aggregates are usually well ordered.

Without an electrical charge the forces are much weaker i.e. the sticking force is Van der Waals force.
Each aggregate is unique because there is no ordering force of the electrical field. Such a building is
also named a cluster.

1.3 Fractals

Cluster is a group of particles of somewhere between 3 and 107 stars/atoms/protons and neu-
trons within nuclei. Fractal on the other hand is more than group of particles. There are several
facts/demands:

Figure 11: Hubble view of one of the globular
clusters [9].

Figure 12: Computer simulated DLA fractal
from initial seed in 3D open space [10].
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Figure 13: Computer simulated DLA fractal
from initial seed over a sphere [10].

Figure 14: Computer simulated 2D fractal [11].

• The geometric pattern of the fractal is repeated at ever smaller scales - irregular shapes and
surfaces that can not be represented by classical geometry are produced. Fractals are scale
invariant and self-similar.

• Fractal has a finite area but an infinite perimeter - it has a fractional dimension D. This is a
statistical quantity that gives an indication of how complete fractal appears to fill space.

Nn = Cr−Dn , (4)

where Nn is number of objects with a characteristic linear dimension rn, C is proportional
constant. From equation 4 it is easy to express fractional dimension or so called similarity
dimension formula [7]

D =
ln Nn+1

Nn

ln rn
rn+1

. (5)

Plot of ln(Nn) with respect to ln(rn) is a linear function with a negative slope which yields the
fractal dimension. For most objects relationship holds true over a finite range of rn. At small
rn this relationship is limited by the size of the particles that make up the object. At large rn
this relationship is limited by the size of the object.

Figure 15: Simulation of the fractal growth. Particles in fractal versus radius of fractal shows
logaritmic dependency [12].

From equation 4 can be written
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C = Nnr
D
n = Nn+1r

D
n+1 = NrD = rD + · · ·+ rD. (6)

For fractals made of different size particles it is possible to express Moran equation [1] from equation
6

C = rD1 + · · ·+ rDN . (7)

Fractals can be classified according to their self-similarity [6]

• Exact self-similarity is the strongest type of self-similarity. The fractal appears identical at
all scales.

• Quasi self-similarity is a loose form of self-similarity. The fractal appears approximately
identical at different scales.

• Statistical self-similarity is the weakest type of self-similarity. The fractal has numerical or
statistical measures which are preserved across scales. All DLA fractals belong to this type.

2 Diffusion Limited Aggregation

DLA theory, proposed by Witten and Sander in 1981, is applicable to aggregation in any system
where diffusion is the primary mean of transport in the system. DLA can be observed in laboratory
in many systems such as electrodeposition and dielectric breakdown.

Figure 16: A fractal structure via electrode-
position is possible if solution of copper su-
fate or zinc sulphate is sandwiched between
glass plates and a voltage between a central
cathode wire and an outer ring anode is ap-
plied [13].

Figure 17: A DLA cluster grown from a cop-
per (II) sulphate solution in an electrodeposi-
tion cell [6]. Fractals are tree-like. The shapes
depend on the applied voltage and the concen-
tration of electrolyte. A linear geometry can
also be adopted with growth between parallel
electrodes.

DLA-cluster (also known as Brownian tree) is a fractal aggregate made by DLA, where the shape
of the cluster is controlled by the possibility of particles to reach the cluster via Brownian motion.
Starting with a uniform distribution, some particles might meet. The aggregates may grow as long
there are particles moving around. “Arms” of the cluster “catch” particles so that they can’t reach
inner parts of the cluster. During the diffusion of a particle through the solution it is more likely,
that the particle attaches to the outer regions than to the inner ones of the cluster - a fluffy shape
occurs, with many arms (see picture 17).
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Figure 18: High-voltage dielectric breakdown (HVDB) within a block of plexiglas creates a fractal
pattern [6]. Dielectric breakdown refers to the formation of electrically conducting regions in an
insulating material exposed to a strong electric field. HVDB represents the negative of DLA when
fractal grows from particles from the environment.

A single-particle bump on a straight edge of the cluster is more likely to catch a wandering particle
also due to the fact that it has three unoccupied neighbours while each particle along the edge has
only one unoccupied neighbour (see picture 19).

Figure 19: Higher probability to glue to the cluster onto the bulk goes to more unoccupied [1].

To summarize, DLA is called “Diffusion” because the particles forming the structure wander around
randomly before attaching themselves (“Aggregating”) to the structure. “Diffusion-limited” because
the particles are considered to be in low concentrations so they don’t come in contact with each other
and the structure grows one particle at a time rather then by chunks of particles.

2.1 Differential equation for DLA

The dynamics of deformable bodies with a well defined surface can be represented by a gauge field Ψ
[14]: inside the body is Ψ ≤ 0, outside Ψ > 0, on the surface, which grows by deposition of diffusing
particles, is

Ψ(x, y, z; t) = 0. (8)

Equation of motion of Ψ (changing of surfaces topology) is

∂Ψ

∂t
+ (~V · ~∇)Ψ = 0, (9)

where ~V (~r, t) is velocity field.
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In the region Ψ > 0 particles with concentration n around nuclei particle/surface diffuse and are
absorbed at the surface boundary. The surface absorbs all the particles that hits it. This is described
with equation 3. The boundary conditions on the surface are n = 0. The particles that disappear
from surface’s environment become part of the solid and change the surface which has “concentration”
n0. The equation 3 changes when considering a given rate of absorption per unit time Φ(~r, t) at a
given boundary point ~r and time t into

∂n

∂t
= D∇2n− q − lim

ε→0+
Φ(~r, t)δ(Ψ− ε)|~∇Ψ|, (10)

The amount of material absorbed from environment at a point ~r of the boundary per unit time and
unit area is

Φ(~r, t) = D(~∇n)+ · ~m, (11)

where + denotes approaching the boundary from the region of positive Ψ and ~m is a unit vector
normal to the surface and pointing into the region of positive Ψ. The normal velocity ~Vm(~r) of the
growing surface is then

Vm(~r) =
1

n0

D(~∇n)+ · ~m. (12)

The velocity field ~V (~r) throughout the space is so

~V (~r) =
1

n0

D(~∇n)+. (13)

With equations from 10 to 13 it is possible to write solution for n

n = ns + lim
ε→0+

dt′d~r′G[~r − ~r′, t− t′]∂Ψ

∂t′
(~r′, t′)δ[Ψ(~r′, t′)− ε)], (14)

where ns is the concentration that would have existed just in the presence of the sources, G is the
Green function. The equation 9 can at last be rewritten into

∂Ψ

∂t
− lim

ε→0+
D

∫
dt′d~r′~∇G(~r − ~r′, t− t′) · ~∇Ψ(~r, t)

∂Ψ

∂t′
(~r′, t′)δ[Ψ(~r′, t′)− ε] = − 1

n0

D~∇ns · ~∇Ψ. (15)

Solution of the equation 15 gives the description of the surface growth.

2.2 Computer simulations of DLA

Computer simulation of DLA is one of the primary means of studying DLA model. Simulations can
be done on a lattice or along the lines of a standard molecular dynamics simulation where a particle
is allowed to freely random walk until it gets within a certain critical range at which time it is pulled
onto the cluster. Of critical importance is that the number of particles undergoing Brownian motion
in the system is kept very low so that only the diffusion controls the aggregation.

The simplest computer growth (using a lattice) starts with an initial seed particle at some origin and
another particle somewhere on the lattice (see pictures 20 and 21). Then the second particle moves
around in random motion (in 2D up, down, left, right), step by step from lattice site to lattice site.
It can meet the first particle or move out from the lattice and another particle is introduced (the
first particle either bounces off the edge or the image is toroidally bound; however, new points can
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be seeded anywhere in the image area). If the particle touches the initial particle, it is immobilized
instantly and becomes part of the aggregate. Then another particle is thrown onto the lattice, it
walks around and after a while meets the first two or moves out from the lattice. The action is
repeated as long as particles are available.

Figure 20: Initial seed particle is in the mid-
dle of the lattice. Second particle is intro-
duced [1].

Figure 21: Fourth particle is introduced to a
three-particle aggregate [1].

Within DLA simulation models, there are some variations:

• The point of view can be changed from the moving particle onto the grid, where it moves on
and handle only the states of the grid. This is called a External linkcellular automaton. Here
it is possible to have more than one particle moving in one iteration.

Figure 22: More than one particle moving in
junior step of the iteration. Particles have
different diameters and linksticking coeffi-
cients [15].

Figure 23: Older step of the iteration. Fractal
structure is starting to appear [15].

• External linksticking coefficient can be introduced - when a particle reaches the cluster it will
not always stick. Thus, when it doesn’t stick immediately, it moves along in the vicinity of the
cluster’s arms, until it either finally sticks somewhere or gets lost.

If the wandering particle strikes part of the existing structure and always sticks, then stickiness
is 1. Otherwise is less then 1. Low stickiness probability gives rise to more dense clusters. The
fractal dimension does not change much until the sticking coefficient becomes less than 0.1. As
the sticking coefficient vanishes the fractal dimension becomes close to the spatial dimension -
close to 2 in 2D.



2 DIFFUSION LIMITED AGGREGATION 11

Figure 24: Fractal grown from a point with different stickiness probability. The higher the stickiness,
the lower the fractal dimension, the lower the density of the fractal [16].

A further modification is using different attaching probabilities depending on the current geo-
metrical environment i.e. the more neighbours are already present, the more likely it is for a
particle to attach.

• The lattice geometry can be varied: a square lattice with four neighbour sites, a triangular
lattice with six neighbours (snowflakes). Overall shape of the cluster is related to the shape of
the lattice.

• A starting line can be used instead of a starting point as a seed line, thus resulting in forest
like clusters (diffusion-limited deposition, DLD).

Figure 25: Initial seed is a point [10].

Figure 26: Initial seed is a line [10]. Figure 27: Initial seed is inner part of a square
[10].
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Figure 28: Initial seed is outer part of a circle
[10].

Figure 29: Initial seed is inner part of a circle
[10].

• Movement over any distance (off-lattice DLA) is allowed (there is no lattice). This approach
allows the creation of very large clusters.

• If there are several simultaneously growing clusters within a ”solution” cluster-cluster-aggregation
(CCA) is introduced.

Fractal growth has been observed after certain growth time under a field emission scanning electron
microscope (SEM) which gave direct proof of the DLA process.

Figure 30: The growth-time dependent morphology of the silver structures, demonstrating DLA
process. The growth time is 1, 5, 10 and 60 min from left to right [17].

2.3 DLA and nanotubes

Van der Waals force is not present only when we are dealing with spherical particles, but also when
shape of particles is non-spherical. Nowadays are “in” all materials which are nanotube-like. They
also aggregate due to mentioned force and DLA. But when investigating nanotube’s properties it
is better to have a single nanotube then a whole aggregate of nanotubes. This is the reason why
physicist started to investigate the Van der Waals interaction between two nanotubes at arbitrary
angle Θ (see picture 31).
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Figure 31: Two cylinders at arbitrary angles [18].

The interaction free energy G for two cylinders with anisotropic dielectric properties yields [18]

G(l,Θ) = −(πa2)2(A(0) +A(2) cos2 Θ)

2πl4 sin Θ
, (16)

G(l,Θ = 0) = −3(πa2)2(A(0) +A(2))

2πl5
, (17)

where a is radius of the cylinders, l is the separation, A is the Hamaker coefficient which quantifies
magnitude of Van der Waals interaction. This coefficients represent the material properties of the
interacting bodies and are tabled.

The molecular structure of the nanotubes was ignored and the interactions between them were derived
in terms of dielectric constant and indices of refraction. See below

A0 =
3

2
kBT

∞∑
n=0

1

2π

∫ 2π

0
∆Lm(Φ)∆Rm(Φ− 90)dΦ, (18)

A0 +A2 =
3

2
kBT

∞∑
n=0

1

2π

∫ 2π

0
∆Lm(Φ)∆Rm(Φ)dΦ, (19)

where spectra functions are

∆Lm(Φ) = −(∆⊥(L) +
1

4
(∆‖(L)− 2∆⊥(L)) cos2 Φ), (20)

∆Rm(Φ) = −(∆⊥(R) +
1

4
(∆‖(R)− 2∆⊥(R)) cos2 Φ), (21)

∆Rm(Φ− 90) = −(∆⊥(R) +
1

4
(∆‖(R)− 2∆⊥(R)) sin2 Φ), (22)

where anisotropy parts are

∆⊥ ≡
εc⊥ − εm
εc⊥ + εm

, (23)

∆‖ ≡
εc‖ − εm
εm

. (24)

This is the physics behind the aggregating dielectrical nanotubes.
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3 Conclusion

With DLA and usage of computers it is possible to construct models of natural objects with irregular
shapes that approximate fractals: clouds, coastlines, mountain ranges, lightning bolts, snowflakes etc.

DLA was proven with observing growth of the silver structures under SEM. It is important that den-
sity of particles is low enough because diffusion in fractal growth should represent the main transport.

My research work is connected with fractal growth of TiO2 via hydrothermal synthesis. I am trying
to make fractal nanotubes using small percentage of impurities. First step was to produce non-
aggregated nanotubes. Since now I made nanotubes which aggregated into inseparable nests. My
next step will be, according to DLA, lowering the concentration of initial compounds to maximally
avoid aggregation and to find optimal hydrothermal synthesis temperature for combined growth of
fractals and crystals.
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